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Selling products via a live stream is
quickly replacing more traditional sell-
ing methods for small businesses such
as photo posts, promising more en-
gagement and higher sales rates. This
report investigates the various ways
ecommerce activity can be classified as
such, revealing whether the differences
in metrics are enough to classify a sta-
tus as a live video, or a photo. We dis-
cover that this can be predicted with a
fairly high level of certainty, and the
best method for this classification is
through the use of a random forest clas-
sifier, providing a prediction accuracy
of 86.96% when hyperparameter opti-
mised.

1 Introduction

Live Streaming is becoming an ever more
popular medium for a wide variety of activ-
ities globally[1], and as a result, there is a
growing interest in the use of live streamed
video to market and sell products online.
This interest is particularly prominent in
Asia[2][3] where live stream commerce is far
ahead of the western market. The impact

that video streaming has on sales for busi-
nesses is still relatively unresearched[4][5],
but it is believed that the increases in
real time communication and social value
it provides to the consumer will likely be
drivers in increased purchase intention[6][7].

The dataset used in this study is a col-
lection of posts by a group of fashion and
cosmetics retailers in Thailand, all using a
split of ‘traditional’ Facebook strategies, as
well as Facebook Live video streaming to
sell their products[8]. It will be investigated
whether a test dataset of these ‘status types’,
as referred to in the dataset, can be effec-
tively predicted and classified based of the
engagement metrics provided in the assigned
training data set. This will provide an insight
into the contrast in viewer engagement and
perceived effectiveness of live stream selling
compared with photo ads, and exploring a
range of different classification techniques
on the dataset will reveal the differing levels
of accuracy and reliability provided by each
method, as well as any underlying issues and
strengths of the algorithms for a dataset of
this size and dimensionality.

Previous studies into this dataset have
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investigated the possible long term and
seasonal shifts brought about by the advent
of live stream commerce in Thailand[9]. This
primarily depended on the interpretation
of various time series plots showing how
engagement metrics changed post the release
of Facebook Live. This study will build
off this knowledge, working under the as-
sumption that live video provides increased
engagement metrics, as demonstrated in
the previous study, and focus instead on
classifying these advertisements correctly
depending on the metrics provided. This will
provide a further insight into the scale of the
benefits of live video selling compared with
other methods.

2 Methodology

2.1 Data

The dataset used for this analysis was col-
lected from the Machine Learning Repository
Database[8], and contains information about
7050 unique instances of Facebook use for
ecommerce by 10 different businesses over the
span of around 9 years. Each entry records
the quantity and type of each interaction, as
well as the ‘status type’ of each instance, re-
ferring to what the format of each entry is.
The total tallies for each of these metrics are
displayed in Figures 1 and 2, with ‘wows’,
‘hahas’, ‘sads’ and ‘angrys’ removed from Fig-
ure 2 due to their very low frequency (How-
ever they are still accounted for in each algo-
rithm).

Figure 1: Total tallies for each status type in
the dataset

Figure 2: Total tallies for each type of en-
gagement metric in the dataset

Status type will be the response variable
for this study, but in order to simplify the
problem to a binary classification, the sta-
tus types ‘link’ and ‘status’ have been re-
moved from the dataset, due to the relatively
few instances of each. There were also 4
empty columns that required removing from
the dataset before analysis, as well as the date
column. This was removed because, as previ-
ously mentioned, earlier studies looked at the
impact that date has on status type in detail,
and so this would not be a feature of this
study. Additionally, the date column con-
tained many missing values, so removing it
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allowed for the whole dataset to be used, as
opposed to the ∼60% remaining when remov-
ing rows with a null date entry. Finally, the
data was randomly shuffled, and partitioned
with a 75/25 split for the training and test
datasets respectively.

2.2 Choice of Algorithms

2.2.1 Principal Component Analysis

In order to reduce the dimensionality of the
dataset and improve computation times,
Principal Component Analysis (PCA) was
used to project the data to 2 dimensions,
while maintaining a suitable amount of
variance[10][11]. This result can then be
visualised to assess for any immediate trends,
but more importantly, it can be applied to
further classification algorithms in order to
visualise groupings in a 2-Dimensional space.

The PCA function from Scikit-learn was
used to carry out the Principal Component
Analysis[12], using the solver type that is
automatically selected to best fit the dataset.
In this case, a randomized Singular Value
Decomposition (SVD) method is selected, as
outlined by Halko et al.[13].

2.2.2 Decision Tree Classifier

A decision tree classifier was the first algo-
rithm tested on the dataset. It was chosen as
the initial method applied as it needs fairly
little data preparation, and the logical steps
used can be visualised well, due to the algo-
rithm using a white box architecture, aiding
with interpretation of the classification[14].
It is also easy to apply statistical tests to
the results of the algorithm, making it fairly
straightforward to produce an initial value
for the level of accuracy we can expect to

attain, as well as the precision and recall of
the classification. The DecisionTreeClassifier
function from Scikit-learn was used for the
classification[15].

One possible downside of decision tree
classifiers is they can often overfit data due
to the generation of over-complex trees that
don’t generalise the data well[14]. This is
accounted for in the code by hyperparameter
tuning the decision tree classifier, and ex-
ploring which value for the maximum depth
provides the best results.

The effects of applying random over-
sampling were also investigated on the
dataset within a decision tree classifier using
the RandomOverSampler package from Im-
balanced Learn[16]. This was implemented
to account for the difference in size of the two
classification groups in the dataset. It was
not strictly needed, as both categories have
a good level of datapoints, but it was useful
to investigate if it had a positive impact
while considering a simpler classification
algorithm. When accounting for any ran-
domness in the oversampler, or in fact any
randomness throughout the investigation,
the random state seed of 0 was used to
ensure consistency and reproducibility.

2.2.3 Random Forest Classifier

The RandomForestClassifier function from
Scikit-learn[17] was then applied to the
data to explore an alternative application of
decision trees. A random forest classifier is
an alteration of a traditional decision tree
classifier that uses a perturb-and-combine
approach in an attempt to reduce the high
levels of variance typically associated with
decision trees[18]. They work by generating
multiple random subsamples of the data,
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on which decision tree classification is in-
dividually performed, and then averaging
the results, cancelling out the decoupled
prediction errors associated with the injected
randomness, and reducing the chance of
overfitting the data[18].

Random Forests can lead to an increased risk
of bias affecting the results[19], but the often
significant gain in variance reduction can
lead to an overall better result[18]. Similar to
the decision tree classifier, hyperparameter
tuning was used to investigate the optimal
value for the maximum depth of the random
forest.

2.2.4 Logistic Regression

Logistic regression, also known as maximum-
entropy classification, was the next choice
of algorithm tested on the dataset. It was
implemented using the LogisticRegression
function from Scikit-learn[20], to perform
a binary classification of the two response
variables. Again, hyperparameter tuning was
used to investigate the optimum performance
of the model, this time when accounting for
various different solver types within logistic
regression. The five different solvers inves-
tigated were ‘newton-cg’, ‘lbfgs’, ‘liblinear’,
‘sag’ and ‘saga’.

The ‘liblinear’ solver uses a coordinate
descent algorithm which works by approx-
imating the minimization for each value
along a coordinate direction successively[21].
It is traditionally a good choice for smaller
datasets. Since the dataset used in this
investigation is neither very large or small,
it is useful to investigate the performance
differences in solvers designed for both large
and small datasets, and is not immediately
apparent without the relevant metric com-

parison which will perform better.

As such, the ‘sag’ and ‘saga’ solvers are
designed to be efficient for larger datasets, as
well as better for multinomial classification,
compared to ‘liblinear’, as they are able
to use true multinomial logistic regression
as opposed to a ‘one-vs-rest’ approach[22].
However, these benefits are not applicable
to the binary classification examined in this
study, and so it is left to be seen if these
solver types provide any intrinsic benefit.
The ‘saga’ solver is designed to be a variant
of the ‘sag’ solver that performs better for
sparse datasets[22]. It will be interesting
to compare the results in this study, as the
dataset used contains some features which
are heavily populated such as ‘comments’,
compared with some features which contain
many zero values, such as ‘wows’.

The ‘newton-cg’ solver is designed to
converge faster when assessing a high-
dimensional dataset[22]. The data consid-
ered in this study is not particularly high
dimension, especially when compared against
the number of samples for each feature. It
will therefore be useful to investigate the
potential increase in result quality with other
solvers compared to this one.

Finally, the ‘lbfgs’ solver uses the Broyden-
Fletcher-Goldfarb-Shanno algorithm, an ap-
proach that also favours smaller datasets[22],
which can be compared against the linear
algorithm used in the ‘liblinear’ solver to
assess whether true multinomial regression
will have any impact when only considering
a binary classification.
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2.2.5 K-Nearest Neighbours

To perform this classification, the KNeigh-
borsClassifier function from Scikit-learn[23]
was used. It is an instance-based learning
algorithm that stores instances of the train-
ing set, instead of constructing a general
internal model[24]. The dataset is then
classified by taking the majority vote for the
assigned number of nearest neighbours for
each point[24]. As such, the given value for
the number of neighbours to compare can
have a large influence on the performance
and results of the algorithm, and so hyper
parameter tuning was used to investigate the
optimal value for this dataset.

Additionally, three different solver types
were investigated, each using a ball tree,
KD tree and brute-force search approach
respectively. Although, these differences
were expected to have less of an impact
than the more diverse solver types present
in logistic regression for example, and so an
initial investigation into performance was
carried out to pick a generally well perform-
ing solver, before further hyper parameter
tuning was performed on just the chosen
solver.

2.2.6 Support Vector Machines

The SVC and LinearSVC functions from
Scikit-learn[25][26] were used to apply sup-
port vector classification to the dataset.
Typically, support vector machines are ef-
fective for high-dimension datasets, avoiding
over-fitting[27]. However, due to the com-
putational expense required, Support Vector
Classification (SVC) was only applied to the
PCA results for the dataset. This addition-
ally allowed for the classification regions to
be plotted in 2-Dimensions, allowing for a

clear comparison between the three different
kernels used. But, it potentially sacrificed
some of the performance that would be
provided by a non-dimensionally-reduced
dataset.

The three kernels considered were a ‘linear’,
‘rbf’ and ‘poly’, where poly had degree 3.
The linear and degree 3 polynomial kernels
generate fairly straightforward classification
regions, only partitioning data points by
straight and degree 3 polynomial lines respec-
tively. The Radial Basis Function (RBF)
kernel is a more complex approach that
aims to best balance the ‘C’ and ‘gamma’
parameters for the function, providing the
best possible classification regions for the
data[28].

3 Results and Discussion

3.1 PCA

Figure 3 demonstrates how the data is sep-
arated after PCA is performed. Live video
(or live stream) statuses will henceforth be
refered to as ’videos’ for simplicity.

Figure 3: Labeled 2 Component PCA plot for
the training dataset
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There are some slight differences in the way
outlier values for photo and video classifica-
tions are plotted, but in general, the PCA
revealed no immediately obvious trend that
could be used for classification. Almost all of
the data points are in a tight band between
values of -5 and 10 for each principal compo-
nent, with no discernible difference between
photo and video statuses.

3.2 Decision Tree and Random
Forest Classifiers

When considering the results of the classi-
fiers, it is important not only to assess the
accuracy value, but also the recall and preci-
sion values. These ensure that the algorithm
doesn’t have a misleadingly high level of accu-
racy, when in actuality it is predicting many
classifications incorrectly also. These values
are therefore considered for every algorithm
used, and used to measure the success of the
algorithm while hyperparameter tuning. As
a result, Figures 4, 5 and 6 were generated,
showing the varying levels of the metrics for
each algorithm, while varying the maximum
depth value for each run.

Figure 4: A comparison of the accuracy, pre-
cision and recall of the decision tree classifier
with varying levels of maximum depth

Figure 5: A comparison of the accuracy, pre-
cision and recall of the decision tree classifier
with random over sampling of the data with
varying levels of maximum depth

Figure 6: A comparison of the accuracy, pre-
cision and recall of the random forest classi-
fier with varying levels of maximum depth

Using these plots, the optimal values for max-
imum depth for each algorithm can be identi-
fied as 10 for decision trees with and without
random oversampling, and 11 for random for-
est. Once this has been found, a useful way
to visualise the accuracy, recall and precision
metrics for each algorithm with optimal hy-
perparameters is through the use of a con-
fusion matrix. These plot the correctly pre-
dicted values for each response variable, as
well as the misclassified predictions for each
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response variable, clearly demonstrating the
overall value of the algorithm. Figures 7,
8 and 9 show the confusion matrices for all
three algorithms.

Figure 7: A confusion matrix for the decision
tree classifier with a maximum depth of 10

Figure 8: A confusion matrix for the decision
tree classifier with random oversampling of
the data with a maximum depth of 10

Figure 9: A confusion matrix for the random
forest classifier with a maximum depth of 11

When assessing the results it is clear that
the decision tree classifier performs better
without random over sampling applied to the
dataset. It predicts more photos and videos
correctly, as well as misclassifying photos
and videos less frequently. The random
forest classifier is arguably even better than
the decision tree classifier, predicting more
status types correctly overall. However, it
did falsely classify a greater number of data
points as videos compared to the decision
tree approach, making the comparison less
straightforward than with and without the
random over sampler.

In order to further compare the value
of each of the algorithms, particularly
comparing decision trees with no random
over sampler and random forest, Receiver
Operating Characteristic (ROC) curves were
plotted for each of the hyperparameter opti-
mised functions. These plot the true positive
rate (recall) against the false positive rate for
a range of thresholds, producing a curve with
an area under curve (AOC) that approaches
1 the more accurate the prediction algorithm
is[29]. Figure 10 shows a comparison of these
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curves for the three algorithms tested here.

Figure 10: ROC Curves for the decision tree
classifier with and without random over sam-
pling of the data with a maximum depth of 10
and the random forest classifier with a maxi-
mum depth of 11

Comparing the curves we can see that while
both the decision tree classifiers perform very
similarly, achieving an identical value for
AUC, the random forest classifier clearly out-
performs them, achieving an AUC of 0.92,
0.03 higher than the other two algorithms.
Random forest classification is therefore cho-
sen as the optimal strategy among these al-
gorithms, and when hyperparameter tuning,
can produce a maximum accuracy of 86.96%
(2dp).

3.3 Logistic Regression

hyperparameter tuning was used to investi-
gate the best choice of solver for the logis-
tic regression algorithm, and so similar plots
were produced to the previous algorithms,
comparing metrics, ROC curves and confu-
sion matrices for each of the solvers.

Figure 11: A comparison of the accuracy, pre-
cision and recall of the logistic regression clas-
sifier with varying solver type

When assessing Figure 11, it is clear that the
‘newton-cg’, ‘lbfgs’ and ‘liblinear’ solvers all
show extremely similar levels of performance,
with the ‘lbfgs’ solver very marginally im-
proving the recall of the algorithm. The ‘sag’
and ‘saga’ solvers also show similarities, both
causing a considerable reduction in precision
and a slight reduction in accuracy, but a sig-
nificant increase in recall. The ‘sag’ solver
slightly outperforms the ‘saga’ solver in all
of these metrics. The ROC curves shown
in Figure 12 allow for further comparison of
the models performance given the different
solvers.

Figure 12: ROC Curves for the logistic re-
gression classifier with varying solver type
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Although resulting in lower overall levels for
the majority of the metrics assessed in Figure
11, the ‘sag’ and ‘saga’ solvers outperform the
other solvers here, with the ‘sag’ solver re-
ceiving the highest AUC value for its ROC
curve of 0.77. These are considerably lower
than the ROC curves calculated for the de-
cision tree and random forest classifiers, sug-
gesting that the logistic regression algorithm
is less reliable in general for correctly classi-
fying status types. Finally, we assess some
confusion matrices for the solvers. Figures
13 and 14 show the matrices for the ‘lbfgs’
and ‘sag’ solvers, as they are identified as the
best two solvers in their respective range of
results.

Figure 13: A confusion matrix for the logis-
tic regression classifier with a solver type of
’lbfgs’

When assessing these matrices it appears the
‘lbfgs’ solver slightly outperforms the ‘sag’
solver, with a higher overall amount of data
points correctly predicted, and a very low
misclassification rate of photos. However, it
struggles a lot more to predict videos, pre-
dicting more incorrectly than correctly. Over-
all, both solvers have value, and so the hy-
perparameter tuning for logistic regression re-
veals that both should be considered for this

Figure 14: A confusion matrix for the logistic
regression classifier with a solver type of ’sag’

application. Overall, the ‘lbfgs’ and ‘sag’
solvers predict status type with an 81.04%
(2dp) and 77.36% (2dp) accuracy respec-
tively. These are both significantly worse
than random forest classification, and so lo-
gistic regression is not advisable for classifi-
cation on this dataset.

3.4 K-Nearest Neighbours

Altering solver type was not initially consid-
ered for k-nearest neighbours, but once again,
hyperparameter tuning was used, this time to
investigate the optimal number of neighbours
to consider when predicting a typing for a
data point. The results of the three metrics
considered for each algorithm with a varying
number of neighbours is shown in Figure 15.
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Figure 15: A comparison of the accuracy,
precision and recall of the k-nearest neigh-
bours classifier with varying numbers of near-
est neighbours considered

Prediction accuracy remains fairly stable
throughout, with precision and recall gradu-
ally rising and falling respectively. Although
there isn’t a drastic change in performance
when varying the number of neighbours con-
sidered, an optimal value of 11 was identified
that best maximises the three metrics. With
this value chosen, the effects of using differing
solver types was then investigated. The ROC
curves for each of the solver types selected are
plotted in Figure 16.

Figure 16: ROC Curves for the k-nearest
neighbours classifier with varying solver type
and 11 nearest neighbours considered

As expected, there is very little variation in
the shape and scale of the ROC curves for
each of the solver types, with the performance
of the model barely affected by which solver is
used. However, for a dataset of this size and
dimensionality, the ROC curves reveal that a
‘kd tree’ search approach is slightly more reli-
able. As such, this is the choice of solver used
going forward. Finally, a confusion matrix is
generated using the optimum hyperparame-
ters, as seen in Figure 17, in order to compare
the performance of the algorithm against the
others considered in this study.

Figure 17: A confusion matrix for the k-
nearest neighbours classifier with a solver
type of ’kd tree’ and 11 nearest neighbours
considered

Overall, with optimal hyperparameter tun-
ing, the k-nearest neighbours algorithm has
an accuracy of 83.64% (2pd). When consid-
ering this, and Figures 17, 13 and 9, it is clear
that while k-nearest neighbours results in less
misclassifications and a better accuracy than
logistic regression, the random forest classi-
fier is still the preferred method for classifi-
cation, as it performs better than k-nearest
neighbours in maximising correct predictions
and minimising incorrect predictions.
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3.5 Support Vector Machines

In order to make processing the support vec-
tor classification algorithm computationally
viable, the PCA data was used as an input, to
reduce the number of dimensions considered
to 2. This further allowed for region plots to
be generated, showing where different kernel
types draw boundaries in 2-dimensional space
in order to classify status types. These plots
are shown in figures 18, 19 and 20, for the
three kernel types considered, linear, degree
3 polynomial and RBF, respectively.

Figure 18: Classification region plot for sup-
port vector classification with a linear kernel
for PCA reduced data

Figure 19: Classification region plot for sup-
port vector classification with a degree 3 poly-
nomial kernel for PCA reduced data

Figure 20: Classification region plot for sup-
port vector classification with an RBF kernel
for PCA reduced data

At first glance it would appear that the
polynomial kernel would result in more ac-
curate predictions, due to its more malleable
parameters. However, this problem is partic-
ularly suited to linear partitioning once PCA
is applied, and considering the values for
accuracy, precision and recall for each kernel
reveals values of 78.44% (2dp), 92.34% (2dp)
and 40.39% (2dp) respectively for the linear
kernel, compared with values of 70.59%
(2dp), 96.51% (2pd) and 14.64% (2pd)
respectively for the degree 3 polynomial
kernel. While precision is slightly higher,
there is a significant reduction in accuracy
and particularly recall when considering the
polynomial kernel, making the linear kernel
preferable. However, when considering the
results for metrics of the RBF kernel, we see
values for accuracy, precision and recall of
79.59% (2pd), 92.88% (2pd), 43.74% (2dp)
respectively, performing better than the
linear kernel in every metric, making it the
kernel of choice for optimum results from the
support vector classification algorithm with
PCA.

Despite this, the accuracy of this algo-
rithm is below that of the other algorithms
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tested in this study, and the best recall
value of 43.74% is significantly lower than
algorithms such as random forest classifica-
tion. These poorer metrics are likely due
to the PCA required to run the algorithm,
providing less dimensions and overall less
training data to fit the model with.

4 Conclusions

This study has investigated the use of
various binary classification algorithms to
predict whether a Facebook seller status is
a live video or a photo, depending on the
engagement metrics of the status. Overall,
the best method for this classification was
identified as the random forest classifier,
using a maximum depth of 11. This resulted
in an accuracy score of 86.96% (2pd), a score
much higher than randomly assigning values
for photo or video, even when accounting for
the difference in number of datapoints for
each type (guessing 100% photo because that
is the more frequent typing). Furthermore, a
score of 83.82% (2dp) and 76.72% (2dp) for
precision and recall respectively, demonstrate
that the algorithm is making relatively few
false classifications, further supporting the
reliability of the predictions.

These results show that status type can
frequently be successfully predicted by
engagement metrics using a range of al-
gorithms, and with some hyperparameter
tuning, a random forest classifier is the best
algorithm for this task.

5 Self-Assessment

I rate my work and the final result for this
report 10/10.
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